
.

FLEA OVERVIEW
FLEA: Formal Language for Expressing

Assumptions
Language Description

INTRODUCTION

Figure1 : Monitoring Architecture

The overall architecture for monitoring is shown in Figure 1. The Monitored
System, in the lower left of the figure, is the source of events. The user, sketched as
a face in the upper left, is a human (or another computer system) with an interest in
being notified of certain combinations of events of the monitored system. In
principle, the user could observe the monitored system's events directly, and
perform all the reasoning to deduce occurrencies of the combinations of events in
which he/she/it is interested. The whole purpose of the FLEA compiler and monitor
is to take over the burden of this reasoning. FLEA is a small language particularly
suited to the expression of event combinations, from which the run-time code to
monitor those assumptions is automatically generated.

FLEA stands for a Formal Language for Expressing Assumptions. Our
original motivation was to use monitoring to notify a system's users /
administrators / designers whenever assumptions underlying use of that
system are violated [Fickas & Feather 1995]. There can be a multitude of
uses for such information, for example, alerting users when they are using a
system in a manner for which it is not intended, alerting administrators of
changes in typical usage patters (to which they might wish to respond by
reconfiguring the system and/or its environment), or alerting designers of
the need/opportunity to extend their systems in new ways which they had not
necessarily predicted. We have come to realize that FLEA can be used to
monitor for event-based conditions, whether or not they represent
assumptions of expected system usage.

Pioneering Technologies
for a Better Internet

Phone: 310-337-3013
 Fax : 310-337-3012

Email: info@cs3-inc .com

5777 W. Century Blvd.
Su ite 1185

Los Angeles, CA 90045-5600

Cs3, Inc.

Cs3, Inc. Page 2 FLEA Overview

The varying thicknesses of the arrows in the figure indicate our crude expectation of the relative frequences -
users provide few declarations of event combinations to monitor for, the monitored system yields many
instances of events, and the monitor generates moderately many notifications. This is not a requirement - for
example, the user could define event combinations that never arise, and so never generate any notifications.
The efficiency of the monitoring software is roughly in line with these expectations - when the user sends the
monitor a new event combination, compilation is relatively slow, whereas when the monitor receives an
event from the monitored system, handling it is relatively fast. There can be multiple sources of observed
events, multiple users expressing event combinations of interest, and multiple destinations to which
notifications are sent.

We can roughly divide flea into three parts. The main focus of this document is the most well developed part
of flea, which is the language for defining interesting data in terms of the primitive data. The other parts deal
with input to the monitor and output from the monitor, i.e., what the primitive events will look like, how they
can be observed, what form notifications will take and how they should be delivered. In general, the monitor
process has little control over the processes with which it is to communicate. Typically these will have to be
started by some mechanism independent of the monitor, and flea will be used only to describe to the monitor
this environment into which it must fit. The input and output parts of the language are really only collections
of utilities that cover the cases we have so far encountered. End users can add to these collections of utilities,
but only by writing new programs. We will describe some of the utilities that we have or plan to have.

The following constructs are part of FLEA. For details and a complete reference manual send e-mail to Cs3
or call (310) 337-3013:

• Data model

• Declaring events

• Declaring relations

• Logical formulae

• Temporal expressions

• Computational conveniences

• Transition events

• Additional arguments to event and relation declarations

• Input to the monitor

• Output from the monitor

• Appendix I - syntax

• Appendix II - predefined relations

